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Perturbation theory for nematic liquid crystals of axially symmetric 
molecules: Numerical results at high pressures including second- and 

fourth rank orientational order parameters 

by KALYAN SINGH and U. P. SINGH 
Department of Physics and Electronics, Avadh University Faizabad (U.P.) 224001, 

India 

(Received 9 September 1988; accepted 28 June 1989) 

A statistical mechanical perturbation theory is applied to study the thermo- 
dynamic properties of nematic liquid crystals at the nematic-isotropic (N-I) phase 
transition under pressure, retaining second- and fourth-rank long-range orienta- 
tional order parameters. We report calculations for a hard ellipsoidal system 
superposed with an attractive interaction and subjected to different external 
pressures. The repulsive interaction is represented by a repulsion between hard 
ellipsoids characterized by a length-to-width ratio and the interaction arising from 
the dispersion interaction between two asymmetric molecules represents the attrac- 
tive interaction. The inclusion of the fourth-rank order parameter in the effective 
one-body potential @(Q) does not lead to a significant overall improvement. The 
influence of pressure on the stability, ordering and thermodynamic functions at the 
N-I transition is analysed. We find that our theoretical predictions are in accord- 
ance with experimental observations. 

1. Introduction 
Systems composed of nonspherical molecules exhibit a variety of phases ranging 

from orientationally ordered crystals to orientationally disordered crystals and meso- 
phases. A simple theoretical model for nonspherical molecules is a hard-ellipsoid 
system. Frenkel and Mulder [l] have discovered four distinct phases, viz. isotropic 
fluid, nematic fluid, ordered solid and plastic solid, by Monte Carlo simulation of 
hard ellipsoids. A system consisting of hard ellipsoids is also a good reference system 
for perturbation theories of molecular fluids. There have been a number of attempts 
[2-71 in the recent past to study the orientational ordering and thermodynamic 
quantities in liquid crystals at high pressures. 

In a previous paper, Singh and Singh [8] (referred to as I) developed a statistical 
mechanical perturbation theory to describe the equilibrium properties of nematic 
liquid crystals. The theory, like the van der Waals theories, is based on the assumption 
that the predominant factor in determining liquid crystalline stability is geometric. 
Thermodynamic properties were calculated for a trial system composed of molecules 
interacting via a pair potential having both repulsive and attractive parts. The 
attractive potential a function of only the centre of mass distance and the relative 
orientation between the two molecules, was approximated by the interaction arising 
from the dispersion interaction between two asymmetric molecules. 

Singh and Singh [9] (referred to as 11) have extended the theory of I to analyse the 
thermodynamic and orientational behaviour of nematogens close to the N-I phase 
transition under high pressure. They have also investigated the effect of quadrupolar 
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642 K. Singh and U. P. Singh 

interactions [lo] on the stability and ordering of the nematic phase under high 
pressure. But in all calculations reported by Singh and Singh [8-101 their investigation 
was limited in the sense that only the second-rank order parameter was taken into 
consideration. However, experimentally, the importance of both second- and fourth- 
rank order parameters ( S 2 ,  s,) has been demonstrated [l 11. 

In the present paper, we refine our calculation of I1 by retaining both second- and 
fourth-rank long-range orientational order terms in the evaluation of the angle- 
dependent term in the expression for the excluded volume and the perturbation term 
under high pressure. We report our results for the thermodymnamic properties at the 
N-I transition for a system of hard ellipsoids (characterized by length-to-width ratio 
xo) superposed with an attractive potential described by a dispersion interaction at 
various pressures ranging from 1 bar to 500 bar. A brief account of the perturbation 
method and the working equations are given in the following section. Results and 
discussions are presented in $3. 

2. Perturbation theory 
The perturbation expansion method used is entirely the same as outlined in I .  We 

consider a system composed of N axially symmetric nonspherical nematogenic 
molecules contained in a volume Vat temperature T, which interact pairwise through 
the potential defined by 

where the vector x i  = ( r i ,  Q i )  represents both the position of the centre of mass and 
the orientation of the ith molecule. uo represents the reference potential and is 
described by the repulsion between hard ellipsoids of length 2a and width 2b and 
length-to-width ratio xo( = a/b). uo = 00 for any rI2, Q,, Q2 such that the rods 1 and 
2 overlap and equals zero otherwise. up is the perturbation potential which is defined 
as the more smoothly varying long-range attractive part. 

Following the statistical mechanical machinery as outlined in 1, the perturbation 
series for the Helmholtz free energy is written as 

where A.  is the reference system contribution to A and 

represents the perturbation terms. s denotes the order of the perturbation. /? = l / k T  
with k the Boltzmann constant. $(a,) is defined as the effective one-body orientational 
perturbation potential given by the relation 

$(")(Ql) = - e j ~ Q J ( W  J drI2up(r1Z, Q,,  g ( S - 1 )  (r12, a,,  W, (4) 2s 

where g") (r12, a, ,  Q2) is the pair correlation function (PCF) for the reference system. 
Other symbols have their usual meanings. In our present development we need to 
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Perturbation theory for  nematics 643 

know only g ( O )  (r12, Q12) which is defined as (as explained in I) 

g(O) (r12, Q d  = dfi2 g'o'(f12? Q l ?  Q 2 h  s 
where PI, is a unit vector along the axis joining the centres of two ellipsoids. 

2.1. Reference system 
For estimating the thermodynamic properties of a system of hard ellipsoids, we 

start with the pressure equation 

E!? e = 1 - &Be p r "  j/.(n,)dQ, Jf(Q2)dQ2 [r12V~o(r123 Q12)lg(o)(r12j 0 1 2 )  

( 5 )  

where the operator V acts only on the rI2 coordinates of uo(rI2, Q12). The hard ellipsoid 
potential satisfies the relation 

uo(r12r Q I J  = uo[r,,/D(r,,, Qldl, 
co f o r r z  < 1, i 0 for r;"2 > 1 ,  

= uo(r;) = 

where D(r12, Q12) is the distance of closest approach of two molecules with relative 
orientation Q I 2 .  Following the Berne and Pechukas [I21 gaussian overlap model, we 
approximate the distance of closest approach D(QI2) [ = D(r,2, SZ,,)] by the relation 

(7) 
which is a reasonably good approximation to the distance of closest approach of two 
hard ellipsoids rather than of two hard spherocylinders as assumed by Singh and 
Singh [&lo]. Do( = 2b) is the length of the minor axis. Q, and Q2 are unit vectors along 
the symmetry axes of two interacting ellipsoids of length-to-width ratio xo and 

x = (xi - l)/(Xi + 1). (8) 
Equation ( 5 )  involves the hard-ellipsoid pair correlation function which is related 

to the probability of finding a hard ellipsoid with known orientation at a given 
distance from the reference hard ellipsoid whose position and orientation are 
known. Following Parsons [ 131 and using decoupling approximation, we assume that 
g(0)(ri2, Q,,) scales as g(o)[r12/D(1212)],  which decouples the orientational degrees of 
freedom from the translational ones to all orders in the density, i.e. 

g(O)(r12, Qld = g(o)[r12/~(Q12)l = &)(r;"2). (9) 
With the help of equation (9) equation (5) reduces to 

(10) - -  13po - 1 + +esk? ( K x c ( Q l 2 ) )  Q , ,  Q2 e 
where the angular bracket (. . .) denotes the ensemble average over the remaining 
N - 2 particles of the system. gf: is the value of the radial distribution function of 
two hard spheres at contact and Kxc(Q12) is the excluded volume or co-volume 
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Figure 1. The variation of N-I transition temperature T,  as a function of C;*/k (K) for a fixed 
value of C;*/C$ = 20. The numbers on the curves indicate the value of xo . Dashed and 
solid lines correspond, respectively, to pressure 1 bar and 300 bar. 

between the two ellipsoids. KXC(Ql2) is given by [I31 

D3(p12, Q12> df12.  

Performing this integration for fixed relative orientation Q, - Q2 = cos O I 2  we get 

KxC(Q12) = 8V,(1 - x2)-”* (1 - x2 C O S ~ ~ ” ) ” * ,  (12) 
where V, is the volume of an ellipsoid. Expanding equation (12) in powers of 
x2 cos2 el,, we get 

(K,,(Q,,>> = 8&(1 - x2)-I” (1 - 2 x (cos2 4 2  >n, ,R2 - fx4  (cos4 812 >a, .RZ 

- # 6 X 6  (Cos6e12>*l,*2 - &x8 (COS8el*>*,,n, . . .I. (13) 

Substituting equation (1 3) in the pressure equation, one gets 

where yl( = e&) is the packing fraction and 
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Perturbation theory for  nematics 645 

0 20 40 60 80 I00 
C:/Ca* - 

The variation of N-I transition temperature T, as a function of C,*/C: for a fixed 
value of C,*/k = 4000.0 (K). The numbers on curves indicate the value of x,,. Dashed 
lines correspond to pressure 1 bar and the numbers in parentheses on the solid lines 
indicate the pressure in bars. 

Figure 2. 

Fn(x) 

F2(x) 

F4(x) = 

= (1 - ~ ~ 1 - l ’ ~  [ I  - i x 2  - h x 4  - * x 6  - . . .I, 

= +(1 - x2)-1’2 [l + AxZ + &J4 + s x 6  + . . .], 
(1 - x2)-i/2 [1 + Is 2 2 x  + 525 l l S 4 x 4  + ‘ ‘  .I. 

(16) 

(17) 

(18) 

The Helmholtz free energy per particle for the reference system can be obtained from 
equation (1 4) 

rl(4 - 3y) [Fn(x) - F ~ ( ( x ) S  - F4(X)sqZI, - -  P A ,  - (In@ - 1) + (ln[4nf(Q)I) + ( I  - y)2 N 

(19) 

where the first two terms represent the free energy of a gas of non-interacting rods. 
Other thermodynamic quantities can be obtained by using equation (5) and equation 
(1 9) and standard thermodynamic relations. 

2.2. First-order perturbation 
The Helmholtz free energy in the first-order perturbation is given by 
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Figure 3. The variation of order parameter S2 at the N-I transition as a function of C,*/C,*. 
CT/k is chosen so as to reproduce T, = 409 (K). The numbers on the curves indicate the 
value of xo . Line symbols are the same as for figure 1 .  

where 

We adopt the following form for the perturbation potential 

where C, and C, are constants related to the isotropic and anisotropic dispersion 
interaction and 8,, is the angle between the long axes of the two molecules. This is 
certainly a drastic oversimplification of the intermolecular potential of real liquid 
crystals but this is in accord with the Maier-Saupe theory [15]. 

Following the algebra given in 1 and using the decoupling approximation, we can 
express equation (22) as 
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Figure 4. The variation of order parameter S, at the N-I transition as a function of C,*/C:. 
C,*/k is chosen so as to reproduce T, = 409 (K). The numbers on the curves indicate the 
value of xo. Line symbols are the same as for figure 1 .  

where 

with C,* = C, / V i ,  and the values of the constants A ,  as a function of length-to-width 
ratio xo are tabulated in I for several values of n. The integral Z6, defined as 

& ( @ 3  T )  = jam rl*2-4gE)(r;i;) dr72, (27) 

can be obtained by knowing the exact radial distribution function for hard spheres 
obtained from computer simulation. Larsen et al. [14] found the following series for Z6: 
Z,(y) 

(28) 
= 0.3333 + 0.42991 1q + 0 . 2 4 1 8 2 ~ ~  + 0 . 0 1 7 6 ~ ~  + 0 . 0 9 0 8 ~ ~  - 0.171 l$. 
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Figure 5. The variation of reduced volume V* (= x/64)  at the NI transition as a function of 
transition temperature T, .  The numbers on the curves with and without parentheses 
indicate, respectively, the values of C,*/Cb and x,, . The parameter C,*/k is chosen so as 
to reproduce the transition temperature T, = 409 (K) at P = 1 bar. Experimental points 
for PAA are taken from [6]. 

40, 42 and d4 and 44/42 were tabulated in I as a function of packing fraction r]  and 
length-to-width ratio x,. It was found that the contribution of 44 increase with x,. For 
xo 2 2, the contribution of higher-order terms are quite substantial. 

With the help of equations (20) and (23) the first order correction to the free energy 
is given by 

The first-order correction to the compressibility factor is found to be 

where 
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Figure 6. The variation of fractional volume change AV/Vat the N-I transition as a function 
of the transition temperature T, . The line symbols are the same as for figure 5. 

with 

2.3. Conditions for therrnodynamic equilibrium 

,!?A /?A, /?A"' - + -  N N N 

The  total configurational Helmholtz free energy can be written as 

- - - 

Substituting /?Ao/N and /?A"'/N, we get 

where 
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650 K. Singh and U. P. Singh 

Figure 7. The variation of temperature with pressure for different values of xo and CF/C$ at 
constant density. The line symbols are the same as for figure 5 .  

The compressibility factor is given by 

The minimization of the free energy with respect to variations in f(n) subject to 
the constraint j f ( i 2 ) d Q  = 1 determines the one-particle orientational distribution at 
a fixed temperature and pressure. Thus the form off(C2) is obtained from equation 
(36); i.e. 

(42) 
exp[2B,S2P2(cos e) + ~B,S,P~(COS e)] 

f(') = ~exp[2B2s2P2(cos e) + 2 ~ 4 s , ~ 4 ( c o s e ) 1 '  
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I 1 I I I I I I I 1 

390 400 410 420 430 440 450 460 470 48C 
T / K  - 

Figure 8. The variation of order parameters S, and S, as a function of temperature at fixed 
densities for xo = 1.5. Numbers on the curves indicate the ratio C,+/C,*(C,*/k = 
3458.5242 for C,*/C,* = 8 and C,*/k = 4295.3472 for C,*/Cdp = 20). 

which leads directly to the transcendental equations for the second- and fourth-rank 
order parameters as defined by 

and 

The nematic-isotropic transition at constant pressure is located by equating the 
pressure and chemical potentials of the two phases, 

SZc and S,, are determined from equations (43) and (44). Keeping the pressure fixed, 
we get five equations involving five unknowns qnc, vi,, T,,  S2, and &. We solve them 
numerically by an iterative procedure. 
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Figure 9. The variation of order parameters S,  and S, as a function of pressure at  fixed C,*/k. 

3. Results and discussion 
We have used the following values for the interaction parameters and the 

molecular volume 

(46) 1 C,*/k = 4000K, 

C,*jC,* = 1/20 and 1/50 

& = 230A'. and 

The values of the force parameters and V, taken here approximately correspond 
to those used in the calculation of the nematic-isotropic transition of PAA by several 
workers. The values of & for PAA was estimated by Viellard-Baron [I61 using van 
der Waals radii and bond lengths from crystallographic data. The value of C, is 
estimated from the latent heat of vaporization [ 171. We first investigate the effects 
caused by ellipsoidal hard core length-to-width ratio xo and the potential parameters 
C, and C, as defined by equation (22) on the thermodynamic properties close to NI 
phase transition as a function of pressure. Using equation (45), NI transition 
parameters are determined at various constant values of pressure ranging from 1 bar 
to 500 bar. The method of calculation is similar to that given in I. 

Figure 1 is a plot of the variation of transition temperature T, with the interaction 
strength parameter C,*/k corresponding to pressures of 1 bar and 300 bar for x,, equal 
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to 1.5 and 2.0. The variation of and of the order parameter S2 with the ratio C,*/C,* 
are shown, respectively, in figure 2 and figure 3 for a fixed value of C;*/k correspond- 
ing to pressures 1 bar and 300 bar for xo = 1.5 and 1 bar and 100 bar for x,, = 2.0. 
Figure 4 is a plot of the fourth-rank order parameter S, at the NI transition as a 
function of C,*/C,* and corresponding to pressures I bar and 300 bar for xo = 1.5 and 
1 bar and 100 bar for xo = 2.0. C,*/k is chosen so as to reproduce T, = 409 K. We 
observe a jump in S, with increasing pressure at fixed xo. It can also be seen from 
the figure that for a given xo for C,*/C,* > 20, the S, value is not very sensitive 
to this ratio. 

We have summarized a number of thermodynamic properties at the NI transition 
in the table. For a given xo and C,*/C,*, the parameter C,*/k was chosen so as to 
reproduce quantitatively the transition temperature T, = 409 K at p = 1 bar. Com- 
paring the results listed in the table with the corresponding results obtained in 11, we 
find that inclusion of S, terms in the calculation leads to a slight change in ther- 
modynamic quantities. The order parameter S,,  relative volume change A V/ V and 
transition entropy AX/Nk (measure of the change in entropy at the transition) 
increase whereas the reduced volume V* (= 7c/6n) decreases slightly. The parameter 
r listed in the table and defined as 

measures the relative sensitivity of the order parameter to volume change and tem- 
perature change. The pressure dependence of the transition temperature (dT, / d P )  is 
determined by Clausius-Clapeyron’s law. r and (dT, / d P )  both increase very slightly 
due to S,.  As x,, is increased in I1 as well as in the present work, the values of S,, S,, 
V * ,  AV/V, AZlNk, dT,/dP and r go up. 

Figures 5 ,  6, and 7 show, respectively, the variation of reduced volume V* and 
AV/V with T, and transition temperature T, with pressure at  a fixed C,*/k. The trends 
in these figures are qualitatively identical to those presented in 11. 

In figure 8 we have plotted second- and fourth-rank long-range orientational 
order parameters (S2 ,  S,) as a function of temperature at fixed density for xo = 1.5. 
The values are obtained by starting at p = 1 bar and a temperature of about 390 K; 
the temperature is then raised while keeping density fixed as in the experiment of 
McColl and Shih [18]. In accordance with the experimental result [18] we find that 
transition occurs at higher temperature compared to the case when the temperature 
is raised at constant pressure. In figure 9 we have plotted S2 and S, as a function of 
pressure at fixed C,*/k. The decrease in S, and S, at the transition with an increase in 
pressure is in accordance with the experimental results by Horn and Faber [2]. 

The general trends in the transition quantities in the present work are identical 
with those presented and discussed in 11. Inclusion of the fourth-rank order parameter 
S,  in the calculation does not lead to a significant overall improvement. Quantitative 
agreement between theory and experiment cannot really be expected as our model 
system crudely simulates a real system. 

Though the decoupling approximation introduces anisotropy in the pair con- 
centration function (PCF) and is exact at very low density, it cannot be exact at liquid 
density. It can be easily seen that when two molecules are parallel, the PCF is most 
anisotropic and when Q, I Q2, it is most isotropic. It therefore seems that the 
decoupling approximation overemphasizes the anisotropy in the pair correlation 
function for the parallel configuration and underestimates that for perpendicular 
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configurations. The decoupling approximation has, however, been found to yield 
values of the compressibility factor in good agreement with computer simulation 
results [19, 201. This justifies the use of decoupling approximations for a system of 
hard ellipsoids. 

We are grateful to U.G.C. New Delhi, for the award of a minor research grant. 
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