This article was downloaded by:
On: 26 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Liquid Crystals

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713926090

Perturbation theory for nematic liquid crystals of axially symmetric molecules: Numerical results at high pressures including second- and fourth rank orientational order parameters

Kalyan Singha; U. P. Singh ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Physics and Electronics, Avadh University Faizabad (U.P.), India

To cite this Article Singh, Kalyan and Singh, U. P.(1989) 'Perturbation theory for nematic liquid crystals of axially symmetric molecules: Numerical results at high pressures including second- and fourth rank orientational order parameters', Liquid Crystals, 6: 6, 641-655
To link to this Article: DOI: 10.1080/02678298908029107
URL: http://dx.doi.org/10.1080/02678298908029107

PLEASE SCROLL DOWN FOR ARTICLE

[^0]
Perturbation theory for nematic liquid crystals of axially symmetric molecules: Numerical results at high pressures including second- and fourth rank orientational order parameters

by KALYAN SINGH and U. P. SINGH
Department of Physics and Electronics, Avadh University Faizabad (U.P.) 224001, India

(Received 9 September 1988; accepted 28 June 1989)

Abstract

A statistical mechanical perturbation theory is applied to study the thermodynamic properties of nematic liquid crystals at the nematic-isotropic ($\mathrm{N}-\mathrm{I}$) phase transition under pressure, retaining second- and fourth-rank long-range orientational order parameters. We report calculations for a hard ellipsoidal system superposed with an attractive interaction and subjected to different external pressures. The repulsive interaction is represented by a repulsion between hard ellipsoids characterized by a length-to-width ratio and the interaction arising from the dispersion interaction between two asymmetric molecules represents the attractive interaction. The inclusion of the fourth-rank order parameter in the effective one-body potential $\psi(\Omega)$ does not lead to a significant overall improvement. The influence of pressure on the stability, ordering and thermodynamic functions at the $\mathrm{N}-\mathrm{I}$ transition is analysed. We find that our theoretical predictions are in accordance with experimental observations.

1. Introduction

Systems composed of nonspherical molecules exhibit a variety of phases ranging from orientationally ordered crystals to orientationally disordered crystals and mesophases. A simple theoretical model for nonspherical molecules is a hard-ellipsoid system. Frenkel and Mulder [1] have discovered four distinct phases, viz. isotropic fluid, nematic fluid, ordered solid and plastic solid, by Monte Carlo simulation of hard ellipsoids. A system consisting of hard ellipsoids is also a good reference system for perturbation theories of molecular fluids. There have been a number of attempts [2-7] in the recent past to study the orientational ordering and thermodynamic quantities in liquid crystals at high pressures.

In a previous paper, Singh and Singh [8] (referred to as I) developed a statistical mechanical perturbation theory to describe the equilibrium properties of nematic liquid crystals. The theory, like the van der Waals theories, is based on the assumption that the predominant factor in determining liquid crystalline stability is geometric. Thermodynamic properties were calculated for a trial system composed of molecules interacting via a pair potential having both repulsive and attractive parts. The attractive potential a function of only the centre of mass distance and the relative orientation between the two molecules, was approximated by the interaction arising from the dispersion interaction between two asymmetric molecules.

Singh and Singh [9] (referred to as II) have extended the theory of I to analyse the thermodynamic and orientational behaviour of nematogens close to the N-I phase transition under high pressure. They have also investigated the effect of quadrupolar
interactions [10] on the stability and ordering of the nematic phase under high pressure. But in all calculations reported by Singh and Singh [8-10] their investigation was limited in the sense that only the second-rank order parameter was taken into consideration. However, experimentally, the importance of both second- and fourthrank order parameters (S_{2}, S_{4}) has been demonstrated [11].

In the present paper, we refine our calculation of II by retaining both second- and fourth-rank long-range orientational order terms in the evaluation of the angledependent term in the expression for the excluded volume and the perturbation term under high pressure. We report our results for the thermodymnamic properties at the N -I transition for a system of hard ellipsoids (characterized by length-to-width ratio x_{0}) superposed with an attractive potential described by a dispersion interaction at various pressures ranging from 1 bar to 500 bar. A brief account of the perturbation method and the working equations are given in the following section. Results and discussions are presented in $\S 3$.

2. Perturbation theory

The perturbation expansion method used is entirely the same as outlined in 1 . We consider a system composed of N axially symmetric nonspherical nematogenic molecules contained in a volume V at temperature T, which interact pairwise through the potential defined by

$$
\begin{equation*}
u_{N}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)=\sum_{1 \leqslant i<j \leqslant N} u_{0}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)+\sum_{1 \leqslant i<j \leqslant N} u_{p}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right), \tag{1}
\end{equation*}
$$

where the vector $\mathbf{x}_{i}=\left(\mathbf{r}_{i}, \Omega_{i}\right)$ represents both the position of the centre of mass and the orientation of the i th molecule. u_{0} represents the reference potential and is described by the repulsion between hard ellipsoids of length $2 a$ and width $2 b$ and length-to-width ratio $x_{0}(=a / b) . u_{0}=\infty$ for any $\mathbf{r}_{12}, \Omega_{1}, \Omega_{2}$ such that the rods 1 and 2 overlap and equals zero otherwise. u_{p} is the perturbation potential which is defined as the more smoothly varying long-range attractive part.

Following the statistical mechanical machinery as outlined in 1, the perturbation series for the Helmholtz free energy is written as

$$
\begin{equation*}
\frac{\beta A}{N}=\frac{\beta A_{0}}{N}+\sum_{s=1}^{\infty} \frac{\beta A^{(s)}}{N} \tag{2}
\end{equation*}
$$

where A_{0} is the reference system contribution to A and

$$
\begin{equation*}
\frac{\beta A^{(s)}}{N}=\beta \int f\left(\Omega_{\mathrm{I}}\right) d \Omega_{1} \psi^{(s)}\left(\Omega_{1}\right) \tag{3}
\end{equation*}
$$

represents the perturbation terms. s denotes the order of the perturbation. $\beta=1 / k T$ with k the Boltzmann constant. $\psi\left(\Omega_{1}\right)$ is defined as the effective one-body orientational perturbation potential given by the relation

$$
\begin{equation*}
\psi^{(s)}\left(\Omega_{1}\right)=\frac{1}{2 s} \varrho \int d \Omega_{2} f\left(\Omega_{2}\right) \int \mathbf{d r}_{12} u_{p}\left(\mathbf{r}_{12}, \Omega_{1}, \Omega_{2}\right) g^{(s-1)}\left(\mathbf{r}_{12}, \Omega_{1}, \Omega_{2}\right) \tag{4}
\end{equation*}
$$

where $g^{(0)}\left(\mathbf{r}_{12}, \Omega_{1}, \Omega_{2}\right)$ is the pair correlation function (PCF) for the reference system. Other symbols have their usual meanings. In our present development we need to
know only $\tilde{g}^{(0)}\left(\mathbf{r}_{12}, \Omega_{12}\right)$ which is defined as (as explained in I)

$$
\tilde{g}^{(0)}\left(\mathbf{r}_{12}, \Omega_{12}\right)=\int d \hat{\mathbf{r}}_{12} g^{(0)}\left(\hat{\mathbf{r}}_{12}, \Omega_{1}, \Omega_{2}\right)
$$

where $\hat{\mathbf{r}}_{12}$ is a unit vector along the axis joining the centres of two ellipsoids.

2.1. Reference system

For estimating the thermodynamic properties of a system of hard ellipsoids, we start with the pressure equation

$$
\begin{equation*}
\frac{\beta p_{0}}{\varrho}=1-\frac{1}{6} \beta \varrho \int d \mathbf{r}_{12} \int f\left(\Omega_{1}\right) d \Omega_{1} \int f\left(\Omega_{2}\right) d \Omega_{2}\left[\mathbf{r}_{12} \nabla u_{0}\left(\mathbf{r}_{12}, \Omega_{12}\right)\right] \tilde{g}^{(0)}\left(\boldsymbol{r}_{12}, \Omega_{12}\right) \tag{5}
\end{equation*}
$$

where the operator ∇ acts only on the \mathbf{r}_{12} coordinates of $u_{0}\left(\mathbf{r}_{12}, \Omega_{12}\right)$. The hard ellipsoid potential satisfies the relation

$$
\begin{align*}
u_{0}\left(\mathbf{r}_{12}, \Omega_{12}\right) & =u_{0}\left[\mathbf{r}_{12} / D\left(\mathbf{r}_{12}, \Omega_{12}\right)\right], \\
& =u_{0}\left(r_{12}^{*}\right)= \begin{cases}\infty & \text { for } r_{12}^{*}<1, \\
0 & \text { for } r_{12}^{*}>1,\end{cases} \tag{6}
\end{align*}
$$

where $D\left(\mathbf{r}_{12}, \Omega_{12}\right)$ is the distance of closest approach of two molecules with relative orientation Ω_{12}. Following the Berne and Pechukas [12] gaussian overlap model, we approximate the distance of closest approach $D\left(\Omega_{12}\right)\left[\equiv D\left(\mathbf{r}_{12}, \Omega_{12}\right)\right]$ by the relation
$D\left(\hat{\mathbf{r}}_{12}, \Omega_{12}\right)=D_{0}\left[1-\chi \frac{\left(\hat{\mathbf{r}}_{12} \cdot \hat{\mathbf{e}}_{1}\right)^{2}+\left(\hat{\mathbf{r}}_{12} \cdot \hat{\mathbf{e}}_{2}\right)^{2}-2 \chi\left(\hat{\mathbf{r}}_{12} \cdot \hat{\mathbf{e}}_{1}\right)\left(\mathbf{r}_{12} \cdot \hat{\mathbf{e}}_{2}\right)\left(\hat{\mathbf{e}}_{1} \cdot \hat{\mathbf{e}}_{2}\right)}{1-\chi^{2}\left(\mathbf{e}_{1} \cdot \hat{\mathbf{e}}_{2}\right)^{2}}\right]^{-1 / 2}$
which is a reasonably good approximation to the distance of closest approach of two hard ellipsoids rather than of two hard spherocylinders as assumed by Singh and Singh [8-10]. $D_{0}(=2 b)$ is the length of the minor axis. $\hat{\mathbf{e}}_{1}$ and $\hat{\mathbf{e}}_{2}$ are unit vectors along the symmetry axes of two interacting ellipsoids of length-to-width ratio x_{0} and

$$
\begin{equation*}
\chi=\left(x_{0}^{2}-1\right) /\left(x_{0}^{2}+1\right) . \tag{8}
\end{equation*}
$$

Equation (5) involves the hard-ellipsoid pair correlation function which is related to the probability of finding a hard ellipsoid with known orientation at a given distance from the reference hard ellipsoid whose position and orientation are known. Following Parsons [13] and using decoupling approximation, we assume that $\tilde{g}^{(0)}\left(\mathbf{r}_{12}, \Omega_{12}\right)$ scales as $g^{(0)}\left[r_{12} / D\left(\Omega_{12}\right)\right]$, which decouples the orientational degrees of freedom from the translational ones to all orders in the density, i.e.

$$
\begin{equation*}
\tilde{g}^{(\theta)}\left(r_{12}, \Omega_{12}\right)=g^{(0)}\left[r_{12} / D\left(\Omega_{12}\right)\right]=g_{\mathrm{hs}}^{(0)}\left(r_{12}^{*}\right) . \tag{9}
\end{equation*}
$$

With the help of equation (9) equation (5) reduces to

$$
\begin{equation*}
\frac{\beta p_{0}}{\varrho}=1+\frac{1}{2} \varrho g_{\mathrm{hs}}^{(1)}\left\langle V_{\mathrm{exc}}\left(\Omega_{12}\right)\right\rangle \Omega_{1}, \Omega_{2} \tag{10}
\end{equation*}
$$

where the angular bracket $\langle\cdots\rangle$ denotes the ensemble average over the remaining $N-2$ particles of the system. $g_{\text {hs }}^{(1)}$ is the value of the radial distribution function of two hard spheres at contact and $V_{\text {exc }}\left(\Omega_{12}\right)$ is the excluded volume or co-volume

Figure 1. The variation of $\mathrm{N}-\mathrm{I}$ transition temperature T_{c} as a function of $C_{i}^{*} / k(\mathrm{~K})$ for a fixed value of $C_{*}^{*} / C_{a}^{*}=20$. The numbers on the curves indicate the value of x_{0}. Dashed and solid lines correspond, respectively, to pressure 1 bar and 300 bar.
between the two ellipsoids. $V_{\mathrm{exc}}\left(\Omega_{12}\right)$ is given by [13]

$$
\begin{equation*}
V_{\mathrm{exc}}\left(\Omega_{12}\right)=\frac{1}{3} \int D^{3}\left(\hat{\mathbf{r}}_{12}, \Omega_{12}\right) \mathrm{d} \hat{\mathbf{r}}_{12} . \tag{11}
\end{equation*}
$$

Performing this integration for fixed relative orientation $\hat{\mathbf{e}}_{1} \cdot \hat{\mathbf{e}}_{2}=\cos \theta_{12}$ we get

$$
\begin{equation*}
V_{\mathrm{exc}}\left(\Omega_{12}\right)=8 V_{0}\left(1-\chi^{2}\right)^{-1 / 2}\left(1-\chi^{2} \cos ^{2} \theta_{12}\right)^{1 / 2} \tag{12}
\end{equation*}
$$

where V_{0} is the volume of an ellipsoid. Expanding equation (12) in powers of $\chi^{2} \cos ^{2} \theta_{12}$, we get

$$
\begin{align*}
\left\langle V_{\mathrm{exc}}\left(\Omega_{12}\right)\right\rangle= & 8 V_{0}\left(1-\chi^{2}\right)^{-1 / 2}\left(1-\frac{1}{2} \chi^{2}\left\langle\cos ^{2} \theta_{12}\right\rangle_{\Omega_{1}, \Omega_{2}}-\frac{1}{8} \chi^{4}\left\langle\cos ^{4} \theta_{12}\right\rangle_{\Omega_{1}, \Omega_{2}}\right. \\
& \left.-\frac{1}{16} \chi^{6}\left\langle\cos ^{6} \theta_{12}\right\rangle_{\Omega_{1}, \Omega_{2}}-\frac{5}{128} \chi^{8}\left\langle\cos ^{8} \theta_{12}\right\rangle_{\Omega_{1}, \Omega_{2}} \ldots\right) . \tag{13}
\end{align*}
$$

Substituting equation (13) in the pressure equation, one gets

$$
\begin{equation*}
\frac{\beta p_{0}}{\varrho}=1+\frac{2 \eta(2-\eta)}{(1-\eta)^{3}}\left[F_{0}(\chi)-F_{2}(\chi) S_{2}^{2}-F_{4}(\chi) S_{4}^{2}\right], \tag{14}
\end{equation*}
$$

where $\eta\left(=\varrho V_{0}\right)$ is the packing fraction and

$$
\begin{equation*}
S_{n}=\int f(\Omega) P_{n}(\cos \theta) d \Omega \tag{15}
\end{equation*}
$$

Figure 2. The variation of $\mathrm{N}-\mathrm{I}$ transition temperature T_{c} as a function of C_{i}^{*} / C_{a}^{*} for a fixed value of $C_{i}^{*} / k=4000 \cdot 0(\mathrm{~K})$. The numbers on curves indicate the value of x_{0}. Dashed lines correspond to pressure 1 bar and the numbers in parentheses on the solid lines indicate the pressure in bars.

$$
\begin{align*}
& F_{0}(\chi)=\left(1-\chi^{2}\right)^{-1 / 2}\left[1-\frac{1}{6} \chi^{2}-\frac{1}{40} \chi^{4}-\frac{1}{112} \chi^{6}-\ldots\right] \tag{16}\\
& F_{2}(\chi)=\frac{1}{3}\left(1-\chi^{2}\right)^{-1 / 2}\left[1+\frac{3}{14} \chi^{2}+\frac{5}{56} \chi^{4}+\frac{25}{528} \chi^{6}+\ldots\right], \tag{17}\\
& F_{4}(\chi)=\frac{1}{35}\left(1-\chi^{2}\right)^{-1 / 2}\left[1+\frac{15}{22} \chi^{2}+\frac{525}{1184} \chi^{4}+\ldots\right] . \tag{18}
\end{align*}
$$

The Helmholtz free energy per particle for the reference system can be obtained from equation (14)

$$
\begin{equation*}
\frac{\beta A_{0}}{N}=(\ln \varrho-1)+\langle\ln [4 \pi f(\Omega)]\rangle+\frac{\eta(4-3 \eta)}{(1-\eta)^{2}}\left[F_{0}(\chi)-F_{2}(\chi) S_{2}^{2}-F_{4}(\chi) S_{4}^{2}\right] \tag{19}
\end{equation*}
$$

where the first two terms represent the free energy of a gas of non-interacting rods. Other thermodynamic quantities can be obtained by using equation (5) and equation (19) and standard thermodynamic relations.

2.2. First-order perturbation

The Helmholtz free energy in the first-order perturbation is given by

$$
\begin{equation*}
\frac{\beta A^{(1)}}{N}=\beta \int d \Omega_{1} F\left(\Omega_{1}\right) \psi^{(1)}\left(\Omega_{1}\right), \tag{20}
\end{equation*}
$$

Figure 3. The variation of order parameter S_{2} at the $\mathrm{N}-\mathrm{I}$ transition as a function of C_{i}^{*} / C_{a}^{*}. C_{i}^{*} / k is chosen so as to reproduce $T_{c}=409(\mathrm{~K})$. The numbers on the curves indicate the value of x_{0}. Line symbols are the same as for figure 1 .
where

$$
\begin{equation*}
\psi^{(1)}\left(\Omega_{1}\right)=\frac{1}{2} \varrho \int d \Omega_{2} f\left(\Omega_{2}\right) \int d \mathbf{r}_{12} u_{p}\left(\mathbf{r}_{12}, \Omega_{1}, \Omega_{2}\right) \tilde{g}^{(0)}\left(\mathbf{r}_{12}, \Omega_{12}\right) \tag{21}
\end{equation*}
$$

We adopt the following form for the perturbation potential

$$
\begin{equation*}
u_{p}\left(\mathbf{r}_{12}, \Omega_{1}, \Omega_{2}\right)=-\frac{C_{i}}{r_{12}^{6}}-\frac{C_{a}}{r_{12}^{6}} P_{2}\left(\cos \theta_{12}\right) ; \text { for } r_{12}>D\left(\Omega_{12}\right), \tag{22}
\end{equation*}
$$

where C_{i} and C_{a} are constants related to the isotropic and anisotropic dispersion interaction and θ_{12} is the angle between the long axes of the two molecules. This is certainly a drastic oversimplification of the intermolecular potential of real liquid crystals but this is in accord with the Maier-Saupe theory [15].

Following the algebra given in I and using the decoupling approximation, we can express equation (22) as

$$
\begin{equation*}
\psi^{(1)}\left(\cos \theta_{1}\right)=-\phi_{0}-\phi_{2} S_{2} P_{2}\left(\cos \theta_{12}\right)-\phi_{4} S_{4} P_{4}\left(\cos \theta_{12}\right), \tag{23}
\end{equation*}
$$

Figure 4. The variation of order parameter S_{4} at the $\mathrm{N}-\mathrm{I}$ transition as a function of C_{i}^{*} / C_{a}^{*}. C_{i}^{*} / k is chosen so as to reproduce $T_{c}=409(\mathrm{~K})$. The numbers on the curves indicate the value of x_{0}. Line symbols are the same as for figure 1 .
where

$$
\begin{align*}
\phi_{0} & =\frac{1}{12} \pi \eta I_{6}(\eta) x_{0} C_{i}^{*}\left(A_{0}+\frac{1}{5} \frac{C_{a}^{*}}{C_{i}^{*}} A_{2}\right), \tag{24}\\
\phi_{2} & =\frac{1}{12} \pi \eta I_{6}(\eta) x_{0} C_{i}^{*}\left[A_{2}+\left(A_{0}+\frac{2}{7} A_{2}+\frac{2}{7} A_{4}\right) \frac{C_{a}^{*}}{C_{i}^{*}}\right], \tag{25}\\
\phi_{4} & =\frac{1}{12} \pi \eta i_{6}(\eta) x_{0} C_{i}^{*}\left[A_{4}+\left[\left(\frac{18}{35} A_{2}+\frac{20}{27} A_{4}\right)\right] \frac{C_{a}^{*}}{C_{i}^{*}}\right], \tag{26}
\end{align*}
$$

with $C_{i}^{*}=C_{i} / V_{0}^{2}$, and the values of the constants A_{n} as a function of length-to-width ratio x_{0} are tabulated in I for several values of n. The integral I_{6}, defined as

$$
\begin{equation*}
I_{6}(\varrho, T)=\int_{0}^{\infty} r_{12}^{*-4} g_{h \mathrm{hs}}^{(0)}\left(r_{12}^{*}\right) d r_{12}^{*} \tag{27}
\end{equation*}
$$

can be obtained by knowing the exact radial distribution function for hard spheres obtained from computer simulation. Larsen et al. [14] found the following series for I_{6} :
$I_{6}(\eta)=0.3333+0.429911 \eta+0.24182 \eta^{2}+0.0176 \eta^{3}+0.0908 \eta^{4}-0.1711 \eta^{5}$.

Figure 5. The variation of reduced volume $V^{*}(=\pi / 6 \eta)$ at the NI transition as a function of transition temperature T_{c}. The numbers on the curves with and without parentheses indicate, respectively, the values of C_{i}^{*} / C_{a}^{*} and x_{0}. The parameter C_{i}^{*} / k is chosen so as to reproduce the transition temperature $T_{c}=409(\mathrm{~K})$ at $P=1 \mathrm{bar}$. Experimental points for PAA are taken from [6].
ϕ_{0}, ϕ_{2} and ϕ_{4} and ϕ_{4} / ϕ_{2} were tabulated in I as a function of packing fraction η and length-to-width ratio x_{0}. It was found that the contribution of ϕ_{4} increase with x_{0}. For $x_{0} \geqslant 2$, the contribution of higher-order terms are quite substantial.

With the help of equations (20) and (23) the first order correction to the free energy is given by

$$
\begin{equation*}
\frac{\beta A^{(1)}}{N}=-\beta \phi_{0}-\beta \phi_{2} S_{2}^{2}-\beta \phi_{4} S_{4}^{2} \tag{29}
\end{equation*}
$$

The first-order correction to the compressibility factor is found to be

$$
\begin{equation*}
\frac{\beta p^{(1)}}{\varrho}=\beta t_{0}+\beta t_{2} S_{2}^{2}+\beta t_{4} S_{4}^{2} \tag{30}
\end{equation*}
$$

where

$$
\begin{align*}
t_{0} & =L\left(A_{0}+\frac{1}{5} \frac{C_{a}^{*}}{C_{i}^{*}} A_{2}\right), \tag{31}\\
t_{2} & =L\left[A_{2}+\left(A_{0}+\frac{2}{7} A_{2}+\frac{2}{7} A_{4}\right) \frac{C_{u}^{*}}{C_{i}^{*}}\right], \tag{32}\\
t_{4} & =L\left[A_{4}+\left(\frac{18}{35} A_{2}+\frac{20}{77} A_{4}\right) \frac{C_{a}^{*}}{C_{i}^{*}}\right], \tag{33}
\end{align*}
$$

Figure 6. The variation of fractional volume change $\Delta V / V$ at the $\mathrm{N}-\mathrm{I}$ transition as a function of the transition temperature T_{c}. The line symbols are the same as for figure 5 .
with

$$
\begin{equation*}
L=-\frac{1}{12} \pi \eta x_{0} C_{i}^{*}\left[I_{6}(\eta)+\eta \frac{\partial I_{6}(\eta)}{\partial \eta}\right] . \tag{34}
\end{equation*}
$$

2.3. Conditions for thermodynamic equilibrium

The total configurational Helmholtz free energy can be written as

$$
\begin{equation*}
\frac{\beta A}{N}=\frac{\beta A_{0}}{N}+\frac{\beta A^{(1)}}{N} . \tag{35}
\end{equation*}
$$

Substituting $\beta A_{0} / N$ and $\beta A^{(1)} / N$, we get

$$
\begin{equation*}
\frac{\beta A}{N}=\langle[\ln 4 \pi f(\Omega)]\rangle+C_{2}-B_{2} S_{2}^{2}-B_{4} S_{4}^{2}, \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{2}=(\ln \varrho-1)+\frac{\eta(4-3 \eta)}{(1-\eta)^{2}} F_{0}(\chi)-\beta \phi_{0}, \tag{37}
\end{equation*}
$$

Figure 7. The variation of temperature with pressure for different values of x_{0} and C_{i}^{*} / C_{a}^{*} at constant density. The line symbols are the same as for figure 5 .

$$
\begin{align*}
& B_{2}=\frac{\eta(4-3 \eta)}{(1-\eta)^{2}} F_{2}(\chi)+\beta \phi_{2} \tag{38}\\
& B_{4}=\frac{\eta(4-3 \eta)}{(1-\eta)^{2}} F_{4}(\chi)+\beta \phi_{4} \tag{39}
\end{align*}
$$

The compressibility factor is given by

$$
\begin{align*}
\frac{\beta p}{\varrho}= & \frac{\beta p_{0}}{\varrho}+\frac{\beta p^{(1)}}{\varrho} \tag{40}\\
= & 1+\left[\frac{2 \eta(2-\eta)}{(1-\eta)^{3}} F_{0}(\chi)+\beta t_{0}\right]+\left[\beta t_{2}-F_{2}(\chi) \frac{2 \eta(2-\eta)}{(1-\eta)^{3}}\right] S_{2}^{2} \\
& +\left[\beta t_{4}-\frac{2 \eta(2-\eta)}{(1-\eta)^{3}} F_{4}(\chi)\right] S_{4}^{2} . \tag{41}
\end{align*}
$$

The minimization of the free energy with respect to variations in $f(\Omega)$ subject to the constraint $\int f(\Omega) d \Omega=1$ determines the one-particle orientational distribution at a fixed temperature and pressure. Thus the form of $f(\Omega)$ is obtained from equation (36); i.e.

$$
\begin{equation*}
f(\Omega)=\frac{\exp \left[2 B_{2} S_{2} P_{2}(\cos \theta)+2 B_{4} S_{4} P_{4}(\cos \theta)\right]}{\int \exp \left[2 B_{2} S_{2} P_{2}(\cos \theta)+2 B_{4} S_{4} P_{4}(\cos \theta)\right]}, \tag{42}
\end{equation*}
$$

The nematic-isotropic transition parameters under high pressure. S_{2} and S_{4} are the order parameters, $\Delta \Sigma / N k$ the transition entropy; $\Gamma\left(T_{c}\right)$ is defined in equation (47). The model parameters are chosen so as to reproduce transition temperature $T_{c}=409 \mathrm{~K}$ at $P=1$ bar, $V^{*}=\pi / 6 \eta$ and $\Delta V / V$ is the fractional change in volume.

x_{0}	C_{i}^{*} / k	C_{i}^{*} / C_{a}^{*}	$\begin{aligned} & P \\ & \text { (par) } \end{aligned}$	T_{c}	V^{*}	$\Delta V / V$	S_{2}	S_{4}	$\Delta \Sigma / N k$	$\Gamma\left(T_{c}\right)$	$\left(d T_{c} / d P\right)$
$1 \cdot 5$	$3458 \cdot 5242$	8	10	$410 \cdot 10$	1.0039	0.0490	0.5684	0.2206	$1 \cdot 3760$	1.9470	119.85
			100	$420 \cdot 48$	0.9964	0.0400	0.5522	0.2074	$1 \cdot 2239$	1.9668	108.03
			200	$430 \cdot 89$	0.9880	0.0334	0.5390	$0 \cdot 1971$	$1 \cdot 1103$	$1 \cdot 9880$	97.82
			300	$440 \cdot 39$	0.9800	0.0288	$0 \cdot 5294$	$0 \cdot 1897$	1.0301	2.0092	89.73
	$4295 \cdot 3472$	20	10	$409 \cdot 60$	0.9235	0.0211	0.5140	$0 \cdot 1785$	0.9535	$2 \cdot 178$	66.51
			100	$415 \cdot 50$	0.9184	0.0192	0.5091	$0 \cdot 1749$	0.9113	2-197	62.69
			200	$421 \cdot 67$	0.9132	0.0174	$0 \cdot 5046$	$0 \cdot 1717$	0.8735	$2 \cdot 219$	59.06
			300	$427 \cdot 50$	0.9083	$0 \cdot 0160$	$0 \cdot 5009$	$0 \cdot 1691$	0.8426	$2 \cdot 239$	55.93
	4885.9538	50	10	409.45	$0 \cdot 8842$	0.0143	0.4974	$0 \cdot 1668$	0.8305	$2 \cdot 351$	49.05
			100	$413 \cdot 83$	0.8807	0.0134	0.4948	$0 \cdot 1654$	0.8081	$2 \cdot 370$	$47 \cdot 00$
			200	$418 \cdot 50$	0.8769	0.0125	0.4924	$0 \cdot 1633$	0.7866	$2 \cdot 390$	44.98
			300	$422 \cdot 89$	0.8734	0.0118	0.4902	$0 \cdot 1618$	0.7682	2.410	$43 \cdot 18$
	5146.0712	100	10	$409 \cdot 41$	0.8701	0.0124	0.4926	0.1636	0.7937	2.429	43.75
			100	413.33	0.8670	0.0117	0.4906	$0 \cdot 1622$	0.7759	$2 \cdot 448$	$42 \cdot 15$
			200	$417 \cdot 52$	0.8638	0.0111	0.4887	$0 \cdot 1608$	0.7586	$2 \cdot 469$	$40 \cdot 54$
			300	$421 \cdot 17$	0.8602	0.0105	0.4861	$0 \cdot 1592$	0.7416	2.492	38.93
$2 \cdot 00$	2864-9486	20	300	472.31	1.0788	0.0775	0.6477	$0 \cdot 3023$	1.637	2.588	$176 \cdot 14$
			400	$489 \cdot 56$	1.0758	0.0621	0.6287	$0 \cdot 2852$	1.415	2.646	158.31
			500	$505 \cdot 67$	$1 \cdot 0716$	0.0598	0.6130	0.2723	1.397	2.710	142.99
	$3000 \cdot 6398$	50	300	$465 \cdot 40$	1.0584	0.0684	0.6369	$0 \cdot 2915$	1.5452	2.7104	160.03
			400	481.01	1.0523	0.0579	0.6203	0.2749	1.3879	2.7660	148.50
			500	$495 \cdot 58$	1.0457	0.0505	0.6074	0.2625	1.2737	2.8220	139.04
	$3052 \cdot 0726$	100	300	$463 \cdot 11$	1.0509	0.0654	0.6331	$0 \cdot 2878$	1.513	2.758	154.54
			400	$478 \cdot 21$	1.0449	0.0557	0.6174	0.2723	$1 \cdot 365$	2.815	143.73
			500	492.32	1.0387	0.0487	$0 \cdot 6051$	0.2604	1.256	2.872	$134 \cdot 88$

Figure 8. The variation of order parameters S_{2} and S_{4} as a function of temperature at fixed densities for $x_{0}=1 \cdot 5$. Numbers on the curves indicate the ratio $C_{i}^{*} / C_{a}^{*}\left(C_{i}^{*} / k=\right.$ 3458.5242 for $C_{i}^{*} / C_{a}^{*}=8$ and $C_{i}^{*} / k=4295 \cdot 3472$ for $\left.C_{i}^{*} / C_{a}^{*}=20\right)$.
which leads directly to the transcendental equations for the second- and fourth-rank order parameters as defined by

$$
\begin{equation*}
S_{2}=\int d \Omega f(\Omega) P_{2}(\cos \theta) \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{4}=\int d \Omega f(\Omega) P_{4}(\cos \theta) \tag{44}
\end{equation*}
$$

The nematic-isotropic transition at constant pressure is located by equating the pressure and chemical potentials of the two phases,

$$
\left.\begin{array}{l}
p_{\mathrm{nem}}\left(\eta_{n c}, T_{c}, S_{2 c}, S_{4 c}\right)=p_{\mathrm{iso}}\left(\eta_{i c}, T_{c}\right), \tag{45}\\
\mu_{\mathrm{nem}}\left(\eta_{n c}, T_{c}, S_{2 c}, S_{4 c}\right)=\mu_{\mathrm{iso}}\left(\eta_{i c}, T_{c}\right) .
\end{array}\right\}
$$

$S_{2 c}$ and $S_{4 c}$ are determined from equations (43) and (44). Keeping the pressure fixed, we get five equations involving five unknowns $\eta_{n c}, \eta_{i c}, T_{c}, S_{2 c}$ and $S_{4 c}$. We solve them numerically by an iterative procedure.

Figure 9. The variation of order parameters S_{2} and S_{4} as a function of pressure at fixed C_{i}^{*} / k.

3. Results and discussion

We have used the following values for the interaction parameters and the molecular volume
and

$$
\left.\begin{array}{rl}
C_{i}^{*} / k & =4000 \mathrm{~K} \tag{46}\\
C_{a}^{*} / C_{i}^{*} & =1 / 20 \text { and } 1 / 50 \\
V_{0} & =230 \AA^{3} .
\end{array}\right\}
$$

The values of the force parameters and V_{0} taken here approximately correspond to those used in the calculation of the nematic-isotropic transition of PAA by several workers. The values of V_{0} for PAA was estimated by Viellard-Baron [16] using van der Waals radii and bond lengths from crystallographic data. The value of C_{i} is estimated from the latent heat of vaporization [17]. We first investigate the effects caused by ellipsoidal hard core length-to-width ratio x_{0} and the potential parameters C_{i} and C_{a} as defined by equation (22) on the thermodynamic properties close to NI phase transition as a function of pressure. Using equation (45), NI transition parameters are determined at various constant values of pressure ranging from 1 bar to 500 bar. The method of calculation is similar to that given in I.

Figure 1 is a plot of the variation of transition temperature T_{c} with the interaction strength parameter C_{i}^{*} / k corresponding to pressures of 1 bar and 300 bar for x_{0} equal
to 1.5 and $2 \cdot 0$. The variation of T_{c} and of the order parameter S_{2} with the ratio C_{i}^{*} / C_{a}^{*} are shown, respectively, in figure 2 and figure 3 for a fixed value of C_{i}^{*} / k corresponding to pressures 1 bar and 300 bar for $x_{0}=1.5$ and 1 bar and 100 bar for $x_{0}=2.0$. Figure 4 is a plot of the fourth-rank order parameter S_{4} at the NI transition as a function of C_{i}^{*} / C_{a}^{*} and corresponding to pressures 1 bar and 300 bar for $x_{0}=1.5$ and 1 bar and 100 bar for $x_{0}=2 \cdot 0 . C_{i}^{*} / k$ is chosen so as to reproduce $T_{c}=409 \mathrm{~K}$. We observe a jump in S_{4} with increasing pressure at fixed x_{0}. It can also be seen from the figure that for a given x_{0} for $C_{i}^{*} / C_{a}^{*}>20$, the S_{4} value is not very sensitive to this ratio.

We have summarized a number of thermodynamic properties at the NI transition in the table. For a given x_{0} and C_{i}^{*} / C_{a}^{*}, the parameter C_{i}^{*} / k was chosen so as to reproduce quantitatively the transition temperature $T_{c}=409 \mathrm{~K}$ at $p=1$ bar. Comparing the results listed in the table with the corresponding results obtained in II, we find that inclusion of S_{4} terms in the calculation leads to a slight change in thermodynamic quantities. The order parameter S_{2}, relative volume change $\Delta V / V$ and transition entropy $\Delta \Sigma / N k$ (measure of the change in entropy at the transition) increase whereas the reduced volume $V^{*}(=\pi / 6 n)$ decreases slightly. The parameter Γ listed in the table and defined as

$$
\begin{equation*}
\Gamma=\frac{V}{T} \frac{(\partial S / \partial V)_{T}}{(\partial S / \partial T)_{V}}=\left(\frac{\partial \ln T}{\partial \ln \varrho}\right)_{S} \tag{47}
\end{equation*}
$$

measures the relative sensitivity of the order parameter to volume change and temperature change. The pressure dependence of the transition temperature ($d T_{\mathrm{c}} / d P$) is determined by Clausius-Clapeyron's law. Γ and ($d T_{c} / d P$) both increase very slightly due to S_{4}. As x_{0} is increased in II as well as in the present work, the values of S_{2}, S_{4}, $V^{*}, \Delta V / V, \Delta \Sigma / N k, d T_{c} / d P$ and Γ go up.

Figures 5, 6, and 7 show, respectively, the variation of reduced volume V^{*} and $\Delta V / V$ with T_{c} and transition temperature T_{c} with pressure at a fixed C_{i}^{*} / k. The trends in these figures are qualitatively identical to those presented in II.

In figure 8 we have plotted second- and fourth-rank long-range orientational order parameters (S_{2}, S_{4}) as a function of temperature at fixed density for $x_{0}=1 \cdot 5$. The values are obtained by starting at $p=1$ bar and a temperature of about 390 K ; the temperature is then raised while keeping density fixed as in the experiment of McColl and Shih [18]. In accordance with the experimental result [18] we find that transition occurs at higher temperature compared to the case when the temperature is raised at constant pressure. In figure 9 we have plotted S_{2} and S_{4} as a function of pressure at fixed C_{i}^{*} / k. The decrease in S_{2} and S_{4} at the transition with an increase in pressure is in accordance with the experimental results by Horn and Faber [2].

The general trends in the transition quantities in the present work are identical with those presented and discussed in II. Inclusion of the fourth-rank order parameter S_{4} in the calculation does not lead to a significant overall improvement. Quantitative agreement between theory and experiment cannot really be expected as our model system crudely simulates a real system.

Though the decoupling approximation introduces anisotropy in the pair concentration function (PCF) and is exact at very low density, it cannot be exact at liquid density. It can be easily seen that when two molecules are parallel, the PCF is most anisotropic and when $\hat{\mathbf{e}}_{1} \perp \hat{\mathbf{e}}_{2}$, it is most isotropic. It therefore seems that the decoupling approximation overemphasizes the anisotropy in the pair correlation function for the parallel configuration and underestimates that for perpendicular
configurations. The decoupling approximation has, however, been found to yield values of the compressibility factor in good agreement with computer simulation results [19, 20]. This justifies the use of decoupling approximations for a system of hard ellipsoids.

We are grateful to U.G.C. New Delhi, for the award of a minor research grant.

References

[1] Frenkel, D., and Mulder, B. M., 1985, Molec. Phys., 55, 1171. Frenkel, D., 1987, Molec. Phys., 60, 1.
[2] Horn, R. G., and Faber, T. E., 1979, Proc. R. Soc. A, 368, 199.
[3] Keyes, P. H., and Daniels, W. B., 1979, J. Phys., Paris, 40, C3, 380.
[4] Emsley, J. W., Luckhurst, G. R., and Timimi, B. A., 1982, Molec. Phys., 44, 659.
[5] Pollman, P., and Scherer, G., 1980, Ber. Bunsenges. phys. Chem., 84, 57.
[6] Tranfield, R. V., and Collings, P. J., 1982, Phys. Rev. A, 25, 2744.
[7] Savithramma, K. L., and Madhusudana, N. V., 1983, Molec. Crystals liq. Crystals, 97 , 407.
[8] Singh, S., and Singh, Y., 1982, Molec. Crystals liq. Crystals, 87, 211, referred to in the text as I.
[9] Singh, S., and Singh, K., 1983, Molec. Crystals liq. Crystals, 101, 77, referred to in the text as II.
[10] Singh, K., and Singh, S., 1984, Molec. Crystals liq. Crystals, 108, 133.
[11] Kachinski, V. N., Ivanov, V. A., Zisman, A. N., and Stishov, S. M., 1979, J. exp. theor. Phys., 48, 273.
[12] Berne, B. J., and Pechukas, P., 1972, J. chem. Phys., 56, 4213.
[13] Parsons, J. D., 1979, Phys. Rev. A, 19, 1225.
[14] Larsen, B., Rasaiah, J. C., and Stell, G., 1977, Molec. Phys., 133, 987.
[15] Maier, W., and Saupe, A., 1959, (a), Z. Naturf., 14, 882; 1960, Ibid., 15, 287.
[16] Viellard-baron, J., 1974, Molec. Phys., 28, 809.
[17] Solsky, J., and Gurushka, E., 1974, J. phys. Chem., 78, 275.
[18] Mc Coll, J. R., and Shiн, C. S., 1972, Phys. Rev. Lett., 29, 86.
[19] Singh, U. P., and Singh, Y., 1986, Phys. Rev. A, 33, 2725.
[20] Frenkel, D., Mulder, B. M., and MacTagle, 1984, Phys. Rev. Lett., 52, 287.

[^0]: Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
 This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

 The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

